5 Gaudin model and opers

نویسنده

  • Edward Frenkel
چکیده

This is a review of our previous works [FFR, F1, F3] (some of them joint with B. Feigin and N. Reshetikhin) on the Gaudin model and opers. We define a commutative subalgebra in the tensor power of the universal enveloping algebra of a simple Lie algebra g. This algebra includes the hamiltonians of the Gaudin model, hence we call it the Gaudin algebra. It is constructed as a quotient of the center of the completed enveloping algebra of the affine KacMoody algebra ĝ at the critical level. We identify the spectrum of the Gaudin algebra with the space of opers associated to the Langlands dual Lie algebra g on the projective line with regular singularities at the marked points. Next, we recall the construction of the eigenvectors of the Gaudin algebra using the Wakimoto modules over ĝ of critical level. The Wakimoto modules are naturally parameterized by Miura opers (or, equivalently, Cartan connections), and the action of the center on them is given by the Miura transformation. This allows us to relate solutions of the Bethe Ansatz equations to Miura opers and ultimately to the flag varieties associated to the Langlands dual Lie algebra g.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3 0 Ju l 2 00 4 Gaudin model and opers

This is a review of our previous works [FFR, F1, F3] (some of them joint with B. Feigin and N. Reshetikhin) on the Gaudin model and opers. We define a commutative subalgebra in the tensor power of the universal enveloping algebra of a simple Lie algebra g. This algebra includes the hamiltonians of the Gaudin model, hence we call it the Gaudin algebra. It is constructed as a quotient of the cent...

متن کامل

Quantization of Soliton Systems and Langlands Duality

We consider the problem of quantization of classical soliton integrable systems, such as the KdV hierarchy, in the framework of a general formalism of Gaudin models associated to affine Kac–Moody algebras. Our experience with the Gaudin models associated to finite-dimensional simple Lie algebras suggests that the common eigenvalues of the mutually commuting quantum Hamiltonians in a model assoc...

متن کامل

Opers on the Projective Line, Flag Manifolds and Bethe Ansatz

1.1. Our starting point is the Gaudin model associated to a simple finite-dimensional Lie algebra g. Let us introduce some notation. For any integral dominant weight λ, denote by Vλ the irreducible finite-dimensional representation of g of highest weight λ. Let z1, . . . , zN be a set of distinct complex numbers and λ1, . . . , λN a set of dominant integral weights of g. Set V(λi) = Vλ1 ⊗ . . ....

متن کامل

Opers with Irregular Singularity and Spectra of the Shift of Argument Subalgebra

The universal enveloping algebra of any simple Lie algebra g contains a family of commutative subalgebras, called the quantum shift of argument subalgebras [R, FFT]. We prove that generically their action on finitedimensional modules is diagonalizable and their joint spectra are in bijection with the set of monodromy-free G -opers on P with regular singularity at one point and irregular singula...

متن کامل

N ov 2 00 2 OPERS AND THETA FUNCTIONS

We construct natural maps (the Klein and Wirtinger maps) from moduli spaces of vector bundles on an algebraic curve X to affine spaces, as quotients of the nonabelian theta linear series. We prove a finiteness result for these maps over generalized Kummer varieties (moduli of torus bundles), leading us to conjecture that the maps are finite in general. The conjecture provides canonical explicit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004